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THE INVISCID STABILITY OF SUPERSONIC
FLOW PAST A SHARP CONE

Peter W. Duck! and Stephen J. Shaw
Department of Mathematics
University of Manchester

ABSTRACT

In this paper we consider the laminar boundary layer which forms on a sharp cone in a
supersonic freestream, where lateral curvature plays a key role in the physics of the problem,:

This flow is then analysed from the point of view of linear, temporal, inviscid stabilitir.
Indeed, the basic, non-axisymmetric disturbance equations are derived for general flows of
this class, and a so called “:triply generalised;’ inflexion condition is found for the existence of
“subsonic” neutral modes of instability. This condition is analogous to the well-known gen-
eralised inflexion condition found in planar flows, although in the present case the condition
depends on both axial and aximuthal wavenumbers.

Extensive numerical results are presented for the stability problem at a freestream Mach
number of 3.8, for a range of streamwise locations. These results reveal that a new mode of
instability may occur, peculiar to flows of this type involving lateral curvature.

Additionally, asymptotic analyses valid close to the tip of the cone / far downstream of
the cone are presented, and these give a partial (asymptotic) description of this additional

mode of instability.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the second author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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It is well known that unlikc many of their incompressible counterparts,
supcrsonic boundary layers arc gencrally susceptible to inviscid forms of
instability; this comment, in particular, applies to Blasius-lype boundary
laycrs. The paper which first tackled the problem of stability of
supersonic boundary layers, from any kind of rigorous mathematical
standpoint was that of Lees and Lin (1946), who presented some extremely
important results on the problem, including the importance of the quantity
*
g—;* [¢* g—;’;.
the normal to the surface, and p* the fluid density), which plays the

(where u* denotes velocity tangential to the surface, y*

same role as that of an inflexion point in incompressible flows. In
particular at the point where the above expression is zero (y* = yo*. say),
then a neutral mode exists with wavespeed u®(y,*) (although see the
restriction (4.21) later in this paper). Lees and Lin also showed how
viscosity played a similar role at a critical layer as in analogous
incompressible flow situations. This two-dimensional work was later
extended to three-dimensions by Reshotko (1962).

The development of digital computers enabled accurate numerical
computations of the problem to be made. One of the earliest was that of
Brown (1962), and this was followed by a number of studies by Mack
(1963, 1964, 1965a,b, 1969, 1984, 1987a), both of an inviscid (large
Reynolds number) and viscous (finite Reynolds number) nature. These
computations revealed a further distinction between supersonic and
incompressible flows, namely that in the latter case an infinite sequence of
modes is possible. These are important, because generally it is one of
these "higher" modes that exhibits the largest growth rate according to
inviscid, linear stability theory.

In spite of their great practical importance, flows of this type, but

involving lateral curvature have received scanty attention over the years.



2
Duck and Hall (1989a) showed how in supcrsonic flows, curvature interacting

with viscosity could provoke additional instabilities (axisymmetric in
form), provided the body radius was below some critical value. Duck and
Hall (1989b) then went on to show how a similar c¢ffect occured with
non-axisymmetric modes (which, in fact, turn out to be generally more .
unstable than corresponding axisymmetric modes).
Recently, Duck (1989) (hcrecafter referred to as [I) has shown the _
influence of curvature on the axisymmetric inviscid stability of supersonic
boundary layers, in particular those that form on thin straight circular
cylinders. It was found that curvature has a profoundly stabilising effect
on these modes. Interestingly, it was shown how curvature altered the
gencralised inflexion condition described above, and a modified (or "doubly
gencralised") inflexion condition, involving the radius of curvature was
derived. -
In the present paper we extend the work of I to non-axisymmetric-
disturbances which, indeed, turn out to be more important than axisymmetric
disturbances considered previously. Further, rather than studying/applying
our techniques to the thin straight circular cylinder, we consider a B
somewhat more practical configuration, namely that of a sharp cone.
To (considerably) facilitate already lengthy and complex computations,
following I we assume that the tip of the cone has a finite radiué, and
that the associated boundary layer on the cone surface i§ planar at the cone

tip. (We expect that far downstream the flow will become planar once again,

)

having utilised the Mangler, 1948, transformation.) Following previous

studies in this area, we also ignore the presence of any shocks.

Ml

Mack (1987b) has performed some computations for the stability of the

V

flow over a cone in supersonic flow, at finite Reynolds numbers, but found
little difference with corresponding planar results. Here, we deliberately
allow curvature to occur throughout the study, both in the equations

governing the basic flow, and in the disturbance equations.
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A few preliminary numerical results of this study have bcen prescnied by
Duck (1990). Hcre, we prescent additional numerical results, and also a

numbcr of important asymptotic results related to these calculations.

2. E R f : I

The genecral léyout of the problem is shown in Fig. 1. The z*  axis
lies along the cone axis, r* denotes the radial coordinate, and © the
azimuthal coordinate. The velocity vector !' has components vl*. vz*
and v3* inthe r*, 8 and z* directions respectively. Although we
shall be concerned with a basic flow which is independent of 6 (and with
vo* = 0), when we go on to consider the stability of the flow, we shall be
concerned with non-axisymmetric disturbances.

In the cylindrical polar coordinate system as defined above, the full

equations of continuity, momentum and energy take on the following forms
(Thompson 1972)

ap* d % 1 0 %
a%r + 5;1 P v1)+ ;: 3% (P v2)
x %
]
Py + L, o
dz r
*

2
DVI* (Vz‘) ap P
o g  |=sE e

ar
+ 1 azr‘ﬂ,+ azr:zi
r 96 . d

# Lrtrt —2og (2.2)
T

+213%r0 (2.3)
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Here p* is the density of the fluid, p* the pressure, p the
specific heat (at constant pressure), and K* the coefficient of heat

conduction. The Eulerian operator is defined as

D 2 vd vt .
-IT-—-aT*—ﬁ'Vl 3*;+;%——+V3 é;;, (25)

and the viscous stress components, assuming Newtonian flow are defined

to be
*
Ieter = 2* %’4 + ATyt (2.6)
r
* *
Tog = 2n" [ L. é%%— + - ] + A% Vv, 2.7
r r
»
T.% = 2t glé— + AT Vvt (2.8)
z
.. « _o* 11 v]' * 0 vy ¥
1r*g = Lor* = 1 ™ 3 + T 3.7 |75 ) (2-9)
avo* 1 avs®
* = 7. %9 = n* __3_] , 2.10
1oz I, K [ 5;%— + ;:, 30 ( )
*  Jv
T%p* = Lp*,t =t [ Qg%, + —5%; ] ) (2.11)

The dispersion function T* in (2.5) is given by
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r* =2u D%*r* + D%O + Dg*z*
+ 2 D2%g + 2 D2*g + 2 D2*,*
F Q- 205 (Tv9E (2.12)
ki
Here the 'D' terms are the components of the rate-of-deformation tensor,
for example
1 vyt vyt
Dgg = —5 —2— + —4— . (2.13)
r a6 r
(2.14)

* *

1 [ ov 1 9v

D%y = - 2+ 3
z 0 2 | dz” PAFT)

and A" above denote the first coefficient of

The coefficients p*
viscosity and bulk viscosity respectively (which are expected to be

functions of temperature).
The equation of state is taken to be that pertaining to a perfect gas,

i.e.
p* = p* R* TV, (2.15)
where R* is the gas constant.
With reference to Fig. 1, the surface of the cone is taken to lie
along r* =a* + A; z*, 2* >0, (later, important assumptions regarding
the size of the slope parameter will be made), and so on this surface we
require
*=v3* = 0. (2.16)

£
Vl - V2 =
If the surface of the cone is insulated then the following additional

boundary condition must be imposed
(2.17)

t 3
oT -0,
In the case of heated/

e 3
an
denotes an outwards normal to the wall).

(where n*



coolced walls, then the condition

®

*
T =T, (2.18) -

must be imposed at the surface.

Conditions rcmain to bc specificd at z* = 0; for this we follow I

(precisely) by assuming that the boundary layer at this location has zero

mh

thickness, enabling planar conditions to be imposed at this position.

in

-

" | iwy

Assuming the cone to be slcnder, then the far-field conditions are taken to

be uniform, with

vit=v*=0 (2.19)
va* = U,* (2.20) -
T = T.". - (2.21)

(Indeed, in the case of non-slender cones, if the shock wave is attached,

Wiy

downstream of the shock the external flow is irrotational, and there

is also a constant slip velocity at the surface of the cone.) We next go on

to derive the basic (boundary-layer) flow on the surface of the cone,

assuming curvature plays a key role in the physics of the problem.

3. _The boundary laver flow

We define our Reynolds number on the tip radius of the cone, a , as

follows

- * * *
Re = U, a p, , (3.1)
Mo | :

and this will be taken to be large throughout this paper. As noted

previously, the basic flow is taken to be independent of 8, and has no

azimuthal velocity component (i.e. va* = 0). i%
It is now convenient to introduce non-dimensional parameters as follows

(vi, v3. r, z, T, p, ) =

* * * * * * -
Re v V3 r z T p 1} (3.2)
Um x ! -U; x ;; ’ —R e aT » Tw x p_j 1] uw'ﬂ . B

wo
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A kecy element of this paper (as in [I) is the inclusion of curvature
terms in the governing cquations to lcading order. If this is to be the

casc, then we must hiave that

7».] =Re- ! X
where X = 0(1), (3.3)
implying a .slender conc.

The leading order governing equations may then be written (assuming

Re — =)
4 o 0
%® -0 (3.5)
Vlg%3+V3g%3=;g—F.[rua:] (3.6)

g v = waen w? [2a)

ST R
where the result
1
P=x (3.8)
has been used, ¢ is the Prandtl number, namely
6 = E:;;E (3.9)

(which is taken to be a constant in this paper), y denoting the ratio of

specific heats, and M, is the freestream Mach number, namely
Mo = U / (Y RY TLHE . (3.10)
The boundary conditions to be applied to this system are

vi=v3 =0 on r=1+32z,

vy =1, Tl as [ — o , (3.11)

together with a wall temperature condition; in the case of insulated walls,



(to lcading order)

§§=o on r=14+7%z, (3.12)

whilst in the case of heated/cooled surfaces
T =Ty on r=1+3xz . (3.13)

To close the problem, a viscosily/tempcrathre law is required. For the
purposes of this paper we take the linear Chapman law (Stewartson 1964),
namely

w=CT (3.14)
where C is taken to be constant (although as noted in I, there would be
no conceptual difficulties in taking more complex variations of viscosity
with temperature),

If we write

V1=CV] ,
-1-
z=C z ,
A =C\, - (3.15)

whilst retaining other terms, then the system (3.4) - (3.7) becomes

a (v _vp. 3 [v ,
ap _
®-0, (3.17)
avy V3 T2 dvj
N T .18)
av
2 g; +v3 g; = T2 (y-1) M2 [3?3]

13 [5E].

whilst the wall boundary conditions are to be applied on

r=1+X\2Z.
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As described previously we assume planar conditions prevail at z = 0,
where the boundary layer is tuken to have zcro thickness. The problem is
thus singular at z =0, and consequently scaled variables must be
introduced in order to (numcrica}ly) solve the system (3.16) - (3.19)

accuratcly. Specifically we write

7 = ¢! ‘;1 m.%).

v3 ='v3 (M.0),

T=T @0, (3.20)
where

¢ =zt (3.21)
and n = (r -1 - AL2)/(. (3.22)

The quantities with a hat are thenrexpected to behave regularly as
{ — 0, and indeed approach the planar solution. Equations (3.16) -

(3.19) now take the following form
3 v 0. La v n] 3 [va] _
Bﬁ[_%]+s'rl+2'3t[—%]'[lc+2']3ﬁ[_%]—0’ (3.23)

op

£ =0, (3.24)

-

V13%3+%3g%3-;3 [lC+§]g¥|3=§gﬁ[rTgﬁ3], (3.25)

“ 3T . lLvy aT ° 1 a1
V] Pl + 5%3 T V3 [lc + g o

A 32
= T2(y-1)M,2 [g%z

+

-|—3>

i
Sﬁ Oﬂg%] . (3.26)
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Here of course

r=1+AL2+0n. (3.27)
The boundary conditions in tcrms of these variables are
;1 = ;3 =0 on n=20
vi—=1, T—1 as 11— . (3.28)

In the case of insulated walls, the additional surface condition is

aT _ )
- 0 on n=20, (3.29)

whilst for heated/cooled wallg.
T=T, on 7=0. (3.30)

Setting { = 0 rcduces the system to an ordinary differential system
(correspondinﬁ to the planar case) as in I in the same limit (indeed,
setting A =-0 rcduces (3.23) - (3.26) to the corregponding system
considered in I). The solution of the ordinary differential system at
{ =0 then provides the initial conditions for a (straightforward)
Crank-Nicolson scheme in {, identical to that used in I. For the
purpoges of this paper, we shall focus our attention on the insulated wall
case (although the heated/cooled case may be treated in exactly the same
manner). Di;lribulions of wall temperature with axial coordinate {(= zt)
are shown in Fig. 2a (M, =2.8) and Fig. 2b (M, =3.8), and tﬁe
corresponding distributions of wall shear ;3n|n =0 are shown in Fig. 3a
(M, = 2.8) and Fig. 3b (M, = 3.8).

In all cases, these distributions are quite different to the
corrcspondingmri'; 0 distributions (i.e. the distributions on a straight
circular cylinder) as found in 1, where at both M, =2.8 and 3.8
a monotonic decrease in values was found. It is also quite clear that the
results evolve from the planar case, to the far downstream limit, as

predicted by the Mangler Transformation (Mangler 1946, Stewartson 1964),

namely

IR RN I A

[}

NI

UL T T A T A (AT

i
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Q3n|n =0, [ —w V3 ;3ﬂ |n =0, {=0
) ) (3.31)
Tlhzo tae—Tln=0 t¢=0.

In the following section we go on to investigate the stability of

flows of this class, subject to small amplitude inviscid disturbances.

4, lInviscid stability of the flow
4.1 Disturbance equations

In this section we derive the disturbance equations relevant to small
amplitude disturbances in any supersonic axisymmetric boundary layer type
flow. In I, just éxisymmetric disturbances were considered; here we
consider the more general case of non-axisymmetric perturbations of the
flow.

We consider disturbances whose wavelength in the axial direction
(1/ax) is comparable to the (tip) radius of the cone. Specifically, at a

fixed z station we write

vi* =8 & U, ¥ (r) E+0(82) ,

vp® = 8 U,* V3 (r) E + 0(82) ,

Ua* [Wo (r) + 8 33 (1) E] + 0(82) ,

*
v3

-3
*
[

=Ta* [To (r) + 8 T (r) E] + 0(32) ,

p* = P’ [}5 () * & (r) E] + 0(82) ,

P =Pt R* T" [1 + 8p (r) E] + 0(82) , (4.1)

where E = exp [i o (; - ¢t) + in 6] , (4.2)

and & is the scale of the disturbance (taken to be diminishingly small),
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whilst

L= (U*7a%)

~

z=2"/"
Wo(r) = ;3 (r.z) ,
To(r) = T (r.7) . (4.3)

where vy and T are found from the computations in the previous section.

Substituting (4.1) into (2.1) - (2.4) and taking the O0(8) terms of

leading order in Re yields the following linear system

~ ~ To
+ i W -V =0, 4.4
oP 1 o (4.4)
Sle gy Mo V3, v Yor o -ip (4.5)
To To To M2
- ic ~ i Wovp _ - inp )
— V9 + = , 4.6
To 2 To M2 8T (4.6)
-ia2cvy i &w, v P :
EEvr, 1% %oV Br 4.7
To To ™M, @7

%6 [- icT+iw, T+ vy To,] + [zél](icﬁ - iWgp) = 0 .
(4.8)
The perturbation equation of state is

~

- _ ~ T
p=Top + TS (4.9)

After some algebra, this system may be reduced to the following two

equations

= 2
= }%g'(w . [ To[ 1+ Eg?f ] - M2 (Wy-c)2 ] , (4.10)
-} 0-
2 . —
B (Wo-¢) ¥y = - = Br (4.11)

i

ot ol

"o

o

N T TR | R
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a rcsult also to be found in the work on the stability of jets by Michalke

(1971). Writing
vi =8¢, a=0a/f, (4.12)

gives

1+AL2+0n Wo-C

io 2 r2
= 1P T n‘ ¢ ] - M.2(W.-c)2
—2-_——7 m m(wo-C) { (4] [l + ") (1+)~§2 " Cn)2 M.~ (¥Wg-c) .

(4.13)
together with

il ¢ _ -
igs (Wg-C) =~ = . 4.14
(Wo-c) T hTyM ( )

These equations may be combined to eliminate p to give

(Wo-¢) [ ¢ + T—:—X%Q—:—EH ] - Won o

d
an n2 (2 ] - e
T [ PrE g ] e to®

2
= 15 (Wo-c) 9 . (4.15)

Alternatively ¢ may be eliminated to give

2 02
51 (W,-¢)2 M2, - T [ 1 & n ]
P [ (o) i R SR V2 R Yy
= W - C(wo'c) 511 TO
on +_l§2 +In | of (Wo-c)

d |To p
- (W,- —_ —2———3——— 4.16
(Wo-¢) [a (Wo-c)] ¢ )

dn

These equations reduce naturally to the system considered in I by

setting n =0 (i.e. axisymmetric disturbances) and A =0 (zero cone

angle).

The boundary conditions to be applied to the above systems are that



¢=py=0 on n=0, (4.17)

together with

0= 1 9u Ky M+ KM (4.18)

~ g M2 i ay (1-¢) Ky (M)
-3 , 4.19
P (- %2 (1021 - @

where .=+ af[t-M2 (1-e)2]} [z + A+ ) | (4.20)

here the appropriate sign is chosen to ensure that the real part of ﬂ

is positive as n — =, to ensure boundedness. Equations (4.15) together
with (4.17) and (4.18) (or (4.16) together with (4.17) and (4.19), or
(4.13), (4.14) together with (4.17), (4.18), (4.19)) constitute an
eigenvalue problem; here, we consider just the temporal problem, i.e. given
n and a (real), to find ¢ (generally complex). The problem was treated
numerically using a Runge-Kutta method based on (4.13) and (4.14), shooting
inwards from some suitably large value of 7, with contour indentation in

the manner described in 1.

4.2 The "tripl lised inflexi fition"
In I, a condition for the existence of so called inviscid, neutral,

axisymmetric mode, i.e. those for which
1-1/M < ¢ < 1 + 1/M,, (4.21)

implying disturbances that decay as 7n — =, was derived. Here, we go on
to derive the corresponding condition for non-axisymmetric modes.

If we multiply (4.15) by ¢* (where an asterisk dénotes a complex
conjugate), and subtract from the resulting equation its complekrbgéjugate.

then the following equation is obtained

i

NI

Y

L

TEETREINT |
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o 4 [ (p-c) (o +19) - Vo @
Wo-c dn x

o 4 [ (Moec*) (gp* + 1 9%) - Wop o*

= —_— . 4.22
Wo-c* dn X ( X
where we have written
x=To {1+ _2_2“2 - M2, (Wo-c)2 (4.23)
alr ] (] ’ .
and r = (1 + A2 + {n)/C. (4.24)
After some algebra, (4.22) can be written as
d + 1 d o+ 1ot
_ (p“ r ® - — ¢ 1 r ?
dn p 4 dn X
* 1 d W 1 d L]
=7 -on | . — . 4.25
% { Wo-¢ dn [ Xr ] Wo-c* dn [ ;9? ] } ¢ )
Writing c=c¢cp+icy, (4.26)
then the neutral state corresponds to cj — 0.

In this limit, (4.25) may be written

¢ [r Lo [m+7e)-0[m +50]l
dn X

=2i 12 1g1%c;d | ¥
W:;%zld_ﬁ[i%n} (4.27)
Following the arguments used in I, if the neutral mode is subsonic,
and satisfies the impermeability boundary condition on n = 0, then to
avoid any contradiction the right-hand-side must be zero at the critical
point where W, = ¢ namely 1 =m7;:; this requires (recasting the equation

in terms of the original variables)
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d won p
=0 . (4.28)
dn n2 {2

2 1
To [1+A{< + Cﬂ][ M a2 (|+l§2+§ﬂ)2] =

This result represents a further gencralisation of the so-called
"doubly gencralised inflexion condition" (or a “triply generalised inflexion
condition"!); setting n=A =0 in (4.28) retrieves the corresponding
result found in 1. Note that in the general result for any shape of cone

surface described by

r=1+ A, (4.29)
merely requares the "AL2" in (ﬁ.iSj to be rcplaceﬂ by A f(0)".
There are clearly many choices of parameters to be made in this study.
The strategy hcre will be to carry out a detailed study for one choice of
‘Prandtl number (0.72), ratio of specific heats (1.4),}cone angle (A =1)

. and"Mgch number (M, = 3.8) for insulated wall conditions; results are
shown in Figs. 4-11. Results for c¢; are pré@eqted for a range of values
of n, at fixed values éf €. Specifically r;;;{tg for { =0.01 (Fig;ﬂég}
{ =0.05 (Fig. 5), { =0.1 (Fig. 6), § =0.2 (Fig. 7), { =1 (Fig. 8),
£ =5 (Fig. 9), { =20 (Fig. 10) and =75 (Fig. 11). In these figures
wqﬁip;}rpondcntrate on growing/neutral modes. All resul;s>may Be regarded
as being fndcpendenx of numerical grid. In a number of cases the

distributions are shown on two figures - this is to increase the resolution

of certain features of the distribution in regions of small growth rates.

In all these figures, the n =0 results are delinerated by a solidus,

the n=1 resulisby - - - -, n=2 results by — - — - — .

n=3 results by — -- — -- — and n =4 results by ........

Neutral points are also marked on the axes.
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The corrcsponding planar results are shown in Mack (1965, 1987a) and
I the important featurc in this case is the existence of two primary
instability modes (and others, but of considcrably smaller growth rate),
with the largest growth rate being associated with the so called "second
mode”.

Figure 4 shows distributions at the location §{ = 0.01, for
n=0,12,3,4. The axisymmetric (n = 0) results are very similar to
Mack's planar results described above (and the axisymmetric results for
the circular cylinder case close to the leading edge, as considered in I).
The first mode extends from close to o =0 (where c, is approximately
1-1/Meo up to a = 0.14 (terminating at a doubly generalised inflexion
point); we shall refer to modes of this general type as mode _I. A second
mode originates at o = 0.24 (where c, =1, and hence may be regarded as
a generalised inflexional neutral mode, with the critical layer occuring in
the freestream) and terminates at around a = 0.4 (which corresponds to
a second doubly generalised inflexional neutral mode); we refer to modes
of this general type as mode 1II.

In some ways the corresponding n =1 results for c; (also shown in
Fig. 4) are very similar to thc'axisymmetric case. However a third mode is
seen to develop, not present in the corresponding axisymmetric (and indeed
planar) results. One important distinction between the n =0 results and
those for n # 0 emerges in the limit as a — 0, for which c¢; /A 0 if
n#0 (the limit as d — 0, L =0(1) is considered in Appendix A),
although of course the temporal growth/decay rate ac; 1is nonetheless zero
at a = 0. We shall refer to this additional mode as mode I,. As «
increases, mode I, rapidly disappears, terminating at a supersonic neutral
point (i.e. where ¢, < 1-1/M;). As a increases, a further neutral mode
soon emerges, at a second (supersonic) neutral point; this mode is of the

class I type described previously, Thereafter, as « 1is increased
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further, the n =1 distribution closely resembles the n =0 results.

The n =12 distribution is qualitatively similar lo'lhose of n=1;
however when n =3, modes I, and I arc sccn 1o amalgamate, although
mode Il remains quantitatively similar to the mode Il results of the
previous n values. In the case of n =4, mode I admits further
enhanced growth rates although it is still mode Il that possesses the
largest growth rate (@ ¢j).

It is not surprising that at { = 0.01 results very similar to
corresponding planar results are obtained, since curvature, generally, will
play a minor role in the physics here; indeed a crude examination of (4.15)
suggests that as { — 0, the corresponding planar Rayleigh equation is
attained. However,as o — 0 and § — 0 a non-uniformity is present;
this aspect is taken up in some detail in the following section, where
further light is shed on the additional mode I,4.

Figure 5 shows results for c¢j at § = 0.05. The axisymmetric mode
exhibits the same general features as the corresponding mode shown on
Fig. 4, although both modes I and Il have diminished giowth rates. In
the case of n =1, it is to be noted that mode I, has (already)
amalgamated with mode I, whilst mode II has si?nificantly reduced
growth rates compared to the § = 0.01 value, although this remains the
more dangerous mode. In the case of n =2, the combined modes I and Iy
exhibit-an enhanced growth rate when compared with the { =0.01 station,
whilst comparing corresponding mode Ils, we note that the growth rate is
diminished; indeed, for n = 2, the maximuym growth rate of the two modes is
comparable. In the case of n =3, the first mode again is more dangerous
compared to the corresponding mode at §{ = 0.01, and this trend is repeated
byrthe n =4 results, although this value of n indicates that ﬁn

increase in n is causing a decrease in growth rate.
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Figure 6 shows results at the § = 0.10 location. Thesc confirm the
Lrends observed previously, of a less unstable mode I, whilst the
(combincd) mode I has a maximum growth rate comparable to mode 1II;
although it appcars that thc n =0 mode Il remains the most unstable.

Figure 7a shows cj versus a distribution at C = 0.20. In this case
mode Il is barcly visible, and so Fig. 7b shows these modes on a larger
scale. Interestingly, it secems to be the n =2 mode I that exhibits the
largest growth rate and is consequently the most important.

Figure 8a shows c¢; distributions at { = 1. Again, because of the very
small growth rates, mode II is shown on an enhanced scale in Fig. 8b.

Note that at this axial location the¢ n=0 and n =4 (and above) cases
do not possess an unstable mode 1 at all (whilst the n = 4 mode II has
such‘small growth rates that it is not visible even on the scale of

Fig. 8b). Overall, it is the n-= 1 mode 1 which is the most dangerous.

Moving further downstream to § =5 (Figs. 9a, 9b) we see a “recovery”
in the maximum growth rate of mode II. Indeed, these results show some
resemblance to the § = 0.2 shown in Figs. 7a, 7b. This is not too
surprising, given that, on account of the Mangler transformation
(Mangler 1948, Stewartson 1964), results as { — = mirror those
as { — 0 (exéepl for a multiplicative factor of V3 .in a).

This trend is confined in Fig. 10 for { = 20, which may be
compared directly to the § =0.05 results of Fig. 5. Notice, in
particular, the re-emergence of mode I, for n =1,

Figure 11 shows results at the furthest downstream location studiéd.
namely { = 75. The n =0 modes now correspond closely with the planar
results of Mack (1984, 1987a for example); (with the factor V3
multiplying a), whilst mode I, is visible for n =1 and 2, and the

union of modes I, and I is clearly seen in the case of n = 3.
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Thus to summarisc, thesc results, which will guide us in certain
asymptotic aspects in the following”scctfon. we obscrve the following
gencral fcaturcs of the stability of the flow: (i) results as 4 -4.~
mirror those ag € — 0, cxcept for a multiplication factor of V33

(ii) Latcral curvature has a strongly stabilising influence on mode II

’
7

together with the axisymmetric mode 1 (this is in accord with the results
found in [I); (iii) there emerges a third mode, I, as a — 0, with
£ —0 or { — =, in the case of n # 0.

In the following section we go on to consider various as;mpéotiquimits

of the system (4.15) (or (4.16)), guided partly by the observations made

above.

. Asymptotic Result

In this section we consider a number of asymptotic limits of the
stability problem, to give us a better understanding of the details of the

numerical results described in the previous section.

Perhaps the mpsriintfiging feature of these numerical results is the
emergence of an additional mode as § — 0 (or { — =) with a — 0. We

investigate this feature first.

6.1 {50, a=00) ot L e a=0hH

Since the problem as posed is basically equivalent as { — 0 and
{ — =, we consider just the former limit, and later we describe, briefly;

how the results for the latter limit can be simply inferred.

As noted in Section 5, as { — 0, (4.15) is seen to generally reduce

to lhéiﬁfghd;;syéfém‘ireatedrby M;&;”?I984. 1987a for exambie). However this

will no longer be the case if a = 0(f), since then lh:idgnominator on the

left-ﬁahaisidé;o%gf4;155756’Téﬁgéfﬁfeaﬁcé§ to the planar result. u"iﬂ‘f

Specifically, let us write (consistent with (4.12))

a =L, 6.1)
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where it is assumed & = 0(1) as § — 0. The rcsults for mode Iy
shown in thc previous scction, together with other results obtained by the
authors indicate that as { —0, ¢ — 0 also.

Partly guided by this, if n = 0(1) we sct

¢ =Qcy + {2y + Leq + (6.2)
9 = go(n) + Lor(m) + () + Ldgzs(m) + ..., (6.3)
Wo = Woo(m) + & Wor(m) + E2Woa(m) + §3Wp3(Q) + ..., (6.4)
To = Too(M) + § To1(M) + L2Tga(n) + {3Toz(m) + ...,

(6.5)
where Woo(n) and Tgo(n) represent the planar values of the velocity

and temperature profiles repectively, and Woj(n) and Toi(m) etc.

correspond to the perturbations to the basic flow caused through curvature.

To leading order, equation (4.15) reduces to

ag Woo %on - ¥oon %0 . | - o (6.6)
M| Too (1 +02] - M2 Wo, ‘
a2

. 2
1.€. woo (Pon - Woon (po = ko { Too [ 1+ 27] - sz wOoz }, (6.7)

where kg, 1is a constant. However we require that @y(n=0)= 0, whilst

9o 1is restricted not to grow exponentially as ﬂ —» =, Consequently we

must have that
ko =0, - (6.8)

and hence

90 = Ag Yoo(M) (6.9)

where A, is an arbitrary constant (i.e. the unknown amplitude of the

eigensolution).

Equation (6.6) is not a uniformly valid approximation to (4.15), for all

n. specifically a breakdown occurs when n= O(C'l). Ve define

n=1+2Ln=0(), (6.10)
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-

(i.e. 7 réprcscnls a scale comparable to the radius of the cone), and

on this scalc we expand ¢ as follows
9= M +L & M) +.... (6.11)

To lcading order equation (4.15) reduces (0

d Oon + % %

A 1+ n2
- M2
[ ]

= 62 0, . (6.12)

The solution to this, which matches on to (6.9) as A — 1 s

© _Ag Kt [ia (M2 - Dt )

% T . (6.13)
Kn” [i & (M2 - 1)?)

where Kj(z;) 1is the Bessel function of order n, argdment zy (the
Kh (z1) solution is chosen in preference to the Im (zy) solution in
order that disturbances are propagated along characteristics in the
downstream direction - see Ward 1955, Kluwick et al 1§84, Duck and Hall
1989a,b).

Returning now to the 0 = 0(1) layer, the O0O({) correction to ¢ is

given by
d_ | ¥o1 9on - €1 Pon * Woo 9in * ¥oo 90 - ¥oon 91 - Woin o | _ 0
dn Too [1 + n2] - M2 Wy2
al

(6.14)

and so integrating this equation once we obtain

Wo1 9on - €1 %on * Yoo ?1n + Yoo 90 - Woon 91 - ¥ol1n %o

= k; { Too [1 + n2] - M2 Wyq2 } : (6.15)
a2
where kj is an arbitrary constant. ¢j must not be exponentially

large as n — =, and consequently we must have
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?1n w Ap = K [ I - Mo +n ] . (6.16)
n— =2
together with
a2

However in order to match correctly with (6.13)

9 |y = w = Pon 53 =1 (6.18)
Ag ia (M2 - DY Kyt ie (2 - D)
Kp* [ia (M2 - 1)t

Eliminating kj, we obtain the following result for c¢j

cp={1+ia®g-nt kg tia (2 - nh
Kn .li6 (M2 - D)

(6.19)
2
Too (1=0) [ ' * 22
- a2
Woon (1=0) [Me2 - 1 - n2]
al

The asymptotic forms for this expression in the limit of large and small

G may be found readily. Firstly as & —» = we have

¢ — —1% Too (1=0) o+ o) (6.20)
Woon (M=0) (M2 - 1)

Secondly as & — 0

¢ — e 4 0(a2) for nel (6.21a)
oon (N=

n Tgq (M=0) 2 -
C] — —W(—)-g%—(ﬁgo-y + 0 (G. logd) for n=l. (6.21b)

In fact it is quite easy to show that as & — O,

- 620 (M.2- 1)R Too (0) 22-2n

. 6.21
Woon (0) . [(n-1)!]% ( ©)

Im {¢y} —

Equations (6.21) are precisely the (real) values found by Duck and Hall

(1989b) for the downstream limit of a non-axisymmetric viscous mode
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(taking into account the diffcrent scalings used in Duck and Hall's paper).
Conscquently we expect that as § — 0/=, on a scale smaller/larger than
that of the cone ;adius. we cxpect this mode to become predominantly viscous
in nature, and to be described by triple-deck theory.

Distributions of Im{cy} with & are shown in Fig. 12 for n =1,2,3
(with (6.20) also shown). Unfortunately (perhaps) it is seen that
Im{cy} <0 for all & (confirmed by (6.20)). From (6.21) we also have
that Im{c;) = 0() as { — 0. Unfortunately, also, the 0({2) and higher
correction to this mode would require a large amount of algebra. However we
are able to make brogress. in particular obtain an estimate for
Im{c (& = 0)) by considering instead the limit as { -+ 0O of equation
(A.2), pertainent to the a — 0 case. (With a = o({) ‘we consider this
aspect in the following subsection).

Finally, for this subsection, note that the §{ — = results may be
simply inferred from these { — 0 results, simply be replacing the small
parameter '{' in the various expansions by the small parameter '1/A('.
More subtle differences between the { << 1 and { >>1 solutions only

appear at higher orders.

62 =0 U0 950 (o [ )

The system (A.2) turns out to be rather easier to analyse as { — 0
than does the corresponding finite & (= aC'l) problem. We again utilise
expaﬁsions (6.2) - (6.5) (although see (6.48) for the ¢ expansion).

To leading order, we have for m = 0(1) that

9o = Ag Woo(M) (6.22)
where A, 1is some (arbitrary) amplitude parameter.

At the next order we have the following system

Voo ®1n - Ao ¥oon €1 + Ao woo2

“Woon 91 + Ao ¥o1 Woon - Ao ¥oin Woo = ki Too . (6.23)
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where kp is a constant, and we have utilised (6.22). Sctting n =0 in

(6.23), assuming ¢1lﬂ=0 =0, then

k; Too (M=0) . (6.24)

-Ap €] Woon(n=0)
The boundary conditions as 1N — « must be compatible with (A.3), together
with (6.22). Defining
t=1+1/8 =0(1), (6.25)

then we must have an outer solution of the form

QU =A™l (6.26a)
where A =Ag+ LA+ b.nn, (6.26b)

and so we must also have

out
wlﬂ N — = Qor F=1 = -(n+1)Ag . (6.27)
Substituting this into (6.23) yields
N Too (n=0)
= wogg m=70) ' (6.28)

in accord with (6.21). In order to estimate complex values of ¢ we must

proceed to higher orders in (.

At the next ofdcr in { we obtain the following equation governing ¢;:
Woo 920 + 2A Woo Qo + 21 Woo @1y + Wo2 don
-Wo2n 90 + Wo1 @19y + 12 Yoo %om - €1 91q
+2¥1 1 %on + ¥o1 % - Yoin 91 - 20 Yoy %o
=21 ¢ Qo - €2 9on + Woo 91 + M Woo 9o

-C1 9o - Woon 92 - 2A Woon 9o - 21 91 ¥ooq

n
v : %0 Yoo
.'rlz woon (po = kz TOO + n2 TOO —T(-)o_ d'ﬂ
0
+ k1 Toy (6.29)

We shall defer any consideration of this equation, and move to the next

order of {, which yields
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Woo @3 + 2 AWoo Qin + 2 MWoo 92 + 2 An Woo Pon
+ 12 Woo @1 - €1 927 - 2Acy Qon - 21 €| 9Iq
- 12 ¢ Pon - €2 91 - 20 €2 Pon - €3 Yon

+ Woo 92 + A Woo 9o + M Woo @1 - C1 9

" ©1 M %0 - €2 %o - Woon 93 - 2 A Yoon @1

- 12 Woin 90 - 21 92 Woon - 12 Woon 91
+ Wo1 92n + 2A W1 Qon + 20 W QIn
+ 12 Wo1 @on + Wo2 @1q + 20 Wo2 Yo
+ %53 @on + Yo1 91 + Wo1 M 9o + Wo2 o
~ Wo3n 9o - 20 Wozn $o - 24 ¥o1q %o

- 2An Woon @0 - Wo2n @1 - 20 Woin 91

- Woin @2 = k2 To1 + ky Tp2 + k3 Too

.
[?1Too - 90 Tol] Woe - €1 Too ®o *+ Wo1 9o Too
+ n2 Ty i dn
Too
o
n .
+ 02 Ty I %o Yoo d1 (6.30)
Too

Our main géalrhcre is now to determine the leading ordér imagipary

component of the complex wavespeed c¢ (we do, of course, already know the
leading order real term). Now since the above equations just éontain real
coefficients, ahy imaginaries must, of;héééééity. only'arise at a critical
point, where, é = Woo. Since ¢ = 0¢{), this must occur when ﬁ'= 0(C).

We therefore consider a thin layer relative to the -n = 0(1) scale, namely
n=mn/{ =0(1) . (6.31)

On this scale, the expansion for ¢ is expected to develop as

9 = Lo (M) + 2o () + 30 (M) + ..., (6.32)

where the ¢; are expected to be normalised in such a way as to be

"generally 0(1) quantities.
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It is casy 1o show that
0o(M) = Ag Woon (M=0) 0 (6.33)
(where A was introducced in (6.22)), and also
®) (M) = A} Woop (n=0) 7 , (6.34)
wherc Ap is a constant, linearly related to Ap, and we have used the

property that Woonn (n=0) = 0).

After some algebra, the cquation for ®,(n) may be written

[Voon (0) 11 - ¢1] %21 - Yoon (0) 92
- _ .3
= kp + 31 ¢} Ag Woon (0) + 37 Ag W°°ﬂﬂﬂ (0) woon(o)

- Mooy (017 Ao 72

~2
. ¥oon (0) Toonp (0) ¢y Ag m_ (6.35)
00

where here ﬁz is an (arbitrary) constant.

I1f we take (as we are quite at IiBerly to do) A, and ﬁz to be real
constants (this is not essential for our arguments, but simplifies the
following argument), then we now consider just ¢21 (where here and
elsewhere a superscript i denotes an imaginary component). This quantity
is triggered by the well known + i ® jump in the logarithm (Mack, 1984 for
example) across the critical layer. Specifically, here, this is caused by
the 7 dependancy on the right-hand-side of equation (6.35) (22 plays no

role in this). If (6.35) is written symbolically as

(Woon (0) - c11 027 - Woon (0) 0 =R . (6.36)

then

-

R dn

— 3 (6.37)
[WOOH(O) n- ¢l

92 = [Yoon (0) 1 - 1]

O I

Evaluating this integral, taking just the imaginaries together with the

limit as 7| — = yields
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: ¥ooqny (©)

+Cy

03 ~ & Ag [¥ooq (0) M-c1] ¢y

Toogn(®) €1
Too(0) [Hoon()]”

= B' [hoon(®) 1 - ¢] . (6.38)

where B' = WAy €} + ¢y n

Moon(®)  [Hoo, (]

Toopy (0) ¢
Too(o)fwoon(o)]z

(6.39)

Equation (6.38) then provides the lower boundary conditions for the system

(6.29) and (6.30).

Since (6.29) contains just real coefficients (and taking c;3 to be

real, an assumption that may be justified a posteriori), then we must have

¢§ = p' Yoo (M) (6.40)

where B' is defined in (6.39).

If we take the imaginary part of (6.30) and allow 1 — =, then

i i o
¢3ﬂ 'ﬂ —_e T 9 Iﬂ e " k3 . (6.41)

HoweQer we require (on account of (A.3)) that

i i
¢3nln —_ e T (n+1) @2 In — ™
i (6.41)
~ - (n+l) B"

and so ky = - nBl . (6.42)

Setting n =0 in (6.30) yields

i i i

; (6.43)
= - nB' Tpg(0) .
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However [rom (6.38) wc have

i i
%0 ln=0 = B Yoon(® . (6.44)
0 i| = ¢; B (6.45)
31]:0 l . .
Conscquently, (after substituting for c¢p),
' 2
G T ,(0)°x 1 0 T ,(0) woonnn(o? _ Toonn(®) 1
3" ) 3 3
Moon (01" [¥oon(0) [Woon] [Woon(0)]
(6.46)

Using the governing equations for the basic flow allows this expression to
be simplified slightly, to

2 2
n TOO(O) T

€y = —————{ 1 + 20 M 2(y-1)n } . (6.47)
3 [¥oon (0] )

In fact the expansion for ¢ in (6.5) is not quite complete as it
stands, since the analysis of the f = 0(1) layer above indicates the
presence- of logarithmic terms; specifically we require

¢ = o(n) + Loy(n) + Czwztn) + L3o3(m) +...
+log C [ G2 g1 () + Q3 @3 (M) +... ], (6.48)

where 921 (M) = Az Woo(m) (6.49)
with App a constant.

A comparison of the fully numerical computation of Real { ¢ (a=0) } ,
with the asymptotic formula (6.28), as §{ — O is shown in Fig. 13. The
agreement is seeﬁ to be entirely satisfactory. Unfortunately the
correlation between the computed Im { ¢ (a = 0) } and that obtained
using (6.47) is much less satisfactory. However, this poor corrclatibn
is not unexpected for two reasons. Firstly accurate computations of
Im { c } in this limit become exceedingly difficult, as confirmed by the

quite complex asymptotic structure detailed above, with both thin
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(m =0 (L)) and thick (0 =0 (1/{)) lecngthscales cemerging.
Sccondly the asymptotic form for Im { cy } is achicved very slowly as
{ — 0, at least in onc particular configuration, where, with n =1, the
rimaginary wavespeed has a leading order cocfficient of approximately
3.898 x 105 {3, A comparison betwcen the numerical and asymptotic results
is not shown in this case.

In the case of { — =, wc may just replace the small parameter ‘('
in the above, by the small parameter '1/A{'. In the following subsection,

we consider the bchaviour of mode I, as { — 0.

The numerical results presented in the previous section strongly
suggest IHQ{ for the most part, as 7C —» 0 mode I has features verf
similar to the planar case, for all values of n. However there is one
important exception to this, namely the behaviour of the lower neutral point
in this limit, Thg planar case has that ¢ — 1 - 1/M, as a— 0,
corresponding to the so-called "sonic" mode. However in the case of our
numerical results, there is evidence of a shift in this neutral point,
along the bééi;}vé real axis, and the neutral point becomes (slightly)
supersonic, with ¢ <1 - 1/M,, as { — 0.

A (sensible) balancing of terms suggests that we might look for a

solution of the form

~ ~

C=C +C1 4.,

¢ =90 + Cop +...

Wo = Woo + 8 Wop +...

To = Too + § Tol +- - (6.50)

-with

e=tta a-= 0(1). (6.51)
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To lcading order, (4.15) yields

W -che -W o
d 00 o’ Yonm o "o | _
I { T } =0 (6.52)
where

The solution to (6.52) which satisfies the impermeability condition on

n=0 is
L]
- - TO
Q’o.= Ko (woo - co) f————:—zdﬂ v (6.53)

o (Wo0-Co)

where ko is some arbitrary constant, and the integral is to be taken
underneath the critical point.
Since we require that ¢y — constant as n — « (in order to match
with (4.18)) we must have that
o =1%1/M, , (6.54)
in order that the integral (6.53) remains bounded as M — . Further, we

take the pegative sign to be consistent with the numerical results and

or comments above; indeed, this is simply a repeat of the planar calculation

—

(Lees and Lin 1946).
Curvature plays an important role at next order, namely O0({). The

governing equation in this case is

d |1 . c
a { o [ (Voo - €0)(@1n + o) - €1 %on - Yoon 91 + ¥o1 %on - ¥oin %o ]

1 N n2 T
— | (Voo - Co) Pon - Woon %o 98 + To
To2 «

+ M2 (Woo - Co) €1 - 2Mu2 (Woo - Co)¥Wo) ]}

_ 62 (Wog -cp) g (6.55)
00

Consequently, using (6.53),
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(Woo - €o) (@1 *+ 90) - €1 9on - Yoon 91 - ¥oiny %

-~ 2 T - a

Ul -
- W -¢)o
= K| 1o + 62 TOJ 2 ——dn, (6.56)
00
0

where Ky is a constant.

In order to match correctly at the outer edge (11 — =) with (4.18),

we must have that

? I o = To n (ng?rfo : ' S (6.5T)
= Kn’ (no) M S

where

1=4—9°_ 4y, (6.58)
(Woo - €02
To = Mot a (2ept (6.59)

Taking the 0(1) terms of (6.56) as M — = and using (6.57) yields

the following non-linear dispersion relationship for ¢y:

~ " ~ 2
1o Ko (M) _ Ms® 1 n2 :
By T (@] 60

The integral (6.58) was evaluated numerically, and for the conditions

ol S

LLAL RN N N [
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prevailing in all our numerical results it was found I =~ -228.4-59.3i.
Equation (6.60) was solved using Newton iteration, and results for
Real { 21 } and Im { 51 } fot vafious n are shown in Figs. 13a and 13b
respectively. -

Notice that as & — =, (6.60) predicts that one family of solutions

has the property that

I LA TR X TR RA]

€l w5«
2 (6.61)
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a << 1 cxpansion for ¢ for thc planar

which is in agrcement with the
(6.62)

casc, namecly
2
12+ 0ed)

c=1-1/M, + a?
2 M3

Equation (6.61) is shown as an asymptotic on Figs. 14a and 14b. Note
which also exist may be found as an exact

LY

¢1

that the (rcal) family of
(6.63)

solution to (6.60), namely
G .
= - v
2 M, a2
The

although the importance of this mode is not thought to be great.
c1's are seen to terminate at a finite value of «,
Notice that in all

complex families of
corresponding to the (lower) neutral point of mode I.
[ ]

cases because Real { Ci } < 0 at the termination point, these modes
correspond to supersonic neutral modes.
From the result shown in Fig. 14b, we are therefore able to offer an

1 by

estimate for the position of the lower neutral point of mode I as [ — 0.
In particular, for the freestream conditions considered throughout this
for n =

this position is given by a.~ 0.1 (i,
Comparing these asymptotic

paper, for n =20
@ ~0.20¢}, and for n=2 by a = 0.295 (}.
results with figure 4 in particular reveals a fair degree of agreement.

 >> 1, the above results may be easily transposed,
the corresponding positions for

In the case of
by the replacement of ‘L' by '1/AL';
lower neutral point are then a ~ 0.1 (lC)'* for n =0,
a ~ 0.20 (kC)'& for n=1, and « ~ 0.295 (AC)-i for n = 2. These

results shown in

{ =75

results are seen to agree quite well with the

’ Fig. 11.

o
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7. Conclusi

In this paper we have studicd the supersonic boundary layer flow, and
the inviscid stability thercof, over a sharp cone with adiabatic wall
conditions. The basic flow is secn 1o evolve from one planar state, to a
sccond, as predicted by the Mangler (1946) Transform.

The "triply gencraliscd inf!cxion condition” is &erivcd. this being the
neccssary condition for subsonic ncutral modes, and is a (second)
gcncralisatian of the well known genc;ﬁliséd inflexion conditibn.

Significantly, the numerical results point tortﬁéroccurence of a third
modcrof iﬁstabilily, not found in simiiéf planar andr(morg rgcently)
akis&mmctric studies. An asymptotic study of this mode shows this mode to
be linked to a viscous mode found by Duck and Hall (1989b), a study based on
triple-deck-theory.

"WIﬁg;j§onic" neutral mode is found to bergljgredrby cuf&dlﬁggf(ah@iin
fact becomes a supersonic neutral mode as revealed by the asymptotic
'analysis valid as §{ — 0 and § — =.)

Significantly, our results show that the so called second mode (mode II)

is not alkays:ihc ﬁést unstable; atriéé;; {ﬁ theréagetbf ﬁoﬁ;axi§§hmetric

modes.
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\ 1ix A T number Limi

In the casc of axisymmetric modes (and indccdﬂbf planar modes, as
considered by Lees and Lin 1946, Mack 1965a, b, 1984, 1987 for example),
as a — 0, the wavespeed ¢ approaches the sonic limit, i.e.

c — 11 1/M,. (A1)

In the case of non-axisymmetric modes, howcver, this is no longer the case.
As clearly illustrated in the results, when n#0, ¢i /A0 as a-—0.
The explanation is as follows.

If we (simply) allow a — O (assuming n # 0), then (4.15) reduces

to
d [ Wo-c) [1+AG2 + Cn] [(1+AL2 + {n) o + Co]
an | T,
. Won[l+AC2 + Cn]2¢
To

2 r2
= 2__%;_2 (Wy-c) (A.2)

As n — =, this system clearly admits solutions of the form

g ~n ! ' (A.3)

(together with ¢ =0 on 7 = 0), which is completely compatible with

the outer solution, where An 0(1). (n defined by (4.19)) namely (4.18).
Equation (A.2) then represents a reduced problem as a — 0, and indeed
a reduced form of the triply generalised inflexion point condition (4.28)
exists in this limit, namely
d | Won (1+ALZ + {m)?2

& TS (A.4)

The system (A.2) - (A.3) was solved in a number of cases (in an
identical manner to the a = 0(1) eigenvalue system) and ils correctness
was confirmed. Notice, however, since the actual temporal growth rate is

acj, then this still reduces to zero as o — 0.
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